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The Principal Extrinsic and Intrinsic Tangent Directions of
Generalised Wintgen Ideal Legendrian Submanifolds

A. Šebeković

Abstract: For Legendrian submanifolds Mn in Sasakian space forms
∼
M

2n+1
(c), I. Mihai ob-

tained an inequality relating (intrinsic) the normalised scalar curvature and (extrinsic) squared

mean curvature and normalised normal curvature of M in
∼
M, characterising also the corre-

sponding equality case. In this paper, it’s shown that (intrinsic) Ricci principal directions and
(extrinsic) Casorati principal directions, for generalised Wintgen ideal Legendrian submani-

folds Mn in Sasakian space forms
∼
M

2n+1
(c), do coincide.

Keywords: Generalised Wintgen ideal Legendrian submanifolds, Ricci principal directions,
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1 Preliminaries

The main and the most naturale Riemannian invariants are the curvature invariants:
sectional, scalar, Ricci curvatures...

For surfaces M2 in E3, the Euler inequality K ≤ H2, where K is Gauss curvature of M2

(intrinsic) and H2 is squared mean curvature of M2 in E3 (extrinsic), and equality in this
case hold if and only if M2 is totally umbilical in E3 or still, by a theorem of Meusnier, if
and only if M2 is a part of a plane E2 or a round spfere S2 in E3. For surfaces M2 in E4,
Wintgen [17] (1979) proved that Gauss curvature K and squared mean curvature H2 and
normal curvature K⊥ of M2 satisfy the inquality K ≤ H2 −K⊥. The equality in this case
holds if and only if the curvature elipses ε = {h(u,u)|u ∈ TM and ||u||= 1} in the normal
planes of M2 in E4 are circles.

This Wintgen inequality between the most important intrinsic and extrinsic scalar val-
ued curvatures of surfaces M2 in E4 was shown to hold more generally for all surfaces

M2 in arbitrary dimensional space forms
∼
M

2+m
(c), inclusive the above characterisation of
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the equality case by Rouxel [15] and by Guadalupe and Rodriguez [9]. De Smet, Dillen,
Verstraelen and Vrancken [7] in 1999. proved the generalised Wintgen inequaluty

ρ ≤ H2 −ρ⊥+ c (1)

for all n-dimensional submanifolds Mn with co-dimension m= 2 in real space forms
∼
M

n+2
(c);

ρ is the normalised scalar curvature of Mn defined by ρ =
2

n(n−1)

n

∑
i< j

< R(ei,e j)e j,ei >,

and ρ⊥ is the normalised normal scalar curvature function of Mn at a point p, defined by

ρ⊥(p) =
2

n(n−1)

√√√√ n

∑
i< j

2

∑
r<s

< R⊥(ei,e j)ξr,ξs >2,

where by {e1, . . . ,en} is any orthonormal basis of the TpMn (p ∈ Mn), R is Riemann-
Christoffel curvature tensor of Mn and R⊥ is the curvature tensor of normal space and
{ξ1,ξ2} is an orthonormal basis of the normal space. They also characterised the equality

case in terms of the shape operators of Mn in
∼
M

n+2
(c) and also conjectured (1) to hold for

all n-dimensional submanifolds Mn in real space forms
∼
M

n+m
(c) of arbitrary co-dimension.

Choi an Lu [5], Lu [12] and Ge-Thang [8] proved this conjecture and also gave a char-
acterisation of the equality case in terms of the second fundimental form.

The submanifolds Mn in
∼
M

n+m
(c) satisfying equality in Wintgen inequality (1) are

called Wintgen ideal submanifolds. For many examples and geometrical properties of
such submanifolds, see e.g [3, 5, 7, 8, 9, 10, 12, 14, 15].

The next step in generalisation of Wintgen ideal submanifolds is given bay I. Mihai
[13].

2 Generalised Wintgen ideal Legendrian submanifolds of Sasakian space forms

A (2m+1)-dimensional Riemannian manifolds (
∼
M

2m+1
,g) is Sasakian manifolds if it ad-

mits an endomorphisam ϕ of its tangent bundle T
∼
M

2m+1
(c), a vector field ξ and a 1− form

η satisfying
ϕ 2 =−id +η ⊗ξ , η(ξ ) = 1, ϕξ = 0, η ◦ϕ = 0,

g(ϕX ,ϕY ) = g(X ,Y )−η(X)η(Y ), η(X) = g(X ,ξ ),

(
∼
∇X ϕ)Y =−g(X ,Y )ξ +η(Y )X ,

∼
∇X ξ = ϕX ,

for vector fields X , Y on
∼
M

2m+1
. With

∼
∇ is denote Riemannian connection with respect to g.

A plane section π in Tp
∼
M

2m+1
is called ϕ -section if it is spanned by X and ϕX , where X is

unit tangent vector ortogonal to characteristic vector filed ξ . The sectional curvature of ϕ -
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section is called a ϕ -sectional curvature and a Sasakian manifolds with constant ϕ -sectional

curvature c is said to be a Sasakian space form and is denoted by
∼
M

2m+1
(c). The curvature

tensor of Sasakian space forms
∼
M

2m+1
(c) is given by [1]

∼
R(X ,Y )Z =

c+3
4

{g(Y,Z)X −g(X ,Z)Y}+

+
c−1

4
{η(X)η(Z)Y −η(Y )η(Z)X +g(X ,Z)η(Y )ξ −

− g(Y,Z)η(X)ξ +g(ϕY,Z)ϕX −
− g(ϕX ,Z)ϕY −2g(ϕX ,Y )ϕZ},

where X , Y , Z are any tangent vector fields on
∼
M

2m+1
(c). If Mn is n- dimensional subman-

ifolds in a Sasakian space form
∼
M

2m+1
(c) then the Gauss equation is given by

∼
R(X ,Y,Z,W ) = R(X ,Y,Z,W )+g(h(X ,W ),h(Y,Z))−g(h(X ,Z),h(Y,W )),

where by R and h are the Riemann curvature tensor and second fundamental form, respec-
tively, of Mn, and X , Y , Z, W are vector tangent to Mn. The mean curvature vector is given
by H(p) = 1

n ∑n
i=1 h(ei,ei), where {e1, . . . ,en,en+1, . . . ,e2m+1} is an orthonormal basis of

tangent space
∼
M

2m+1
(c), such that {e1,e2, . . . ,en} are tangent to Mn at p. A submanifold

Mn normal to ξ in a Sasakian manifold is said to be a C- totally real submanifold. It follows
that ϕ(TpMn) ⊂ T⊥

p Mn, for every p in C-totally real submanifold Mn. If m = n, then Mn is
called Legendrain submanifold

Let Mn be n-dimensional Legendrian submanifold of a Sasakian space form
∼
M

2m+1
(c)

and {e1,e2, . . . ,en} an orthonormal frame on Mn and {en+1, . . . ,e2n,e2n+1 = ξ} an orthonor-
mal frame in the normal bundle T⊥Mn.

Then the Gauss equation is given by:

R(X ,Y,Z,W ) =
c+3

4
{g(X ,Z)g(Y,W )−g(Y,Z)g(X ,W )}

+ g(h(X ,Z)h(Y,W ))−g(h(X ,W ),h(Y,Z)),

where h and A denote the second fundamental form and the shape operator of Mn in
∼
M

2m+1
(c).

Theorem 2.1 [13] Let Mn be an n-dimensional Legendrian submanifold of a Sasakian

space form
∼
M

2m+1
(c) . Then

(ρ⊥)2 ≤ (||H||2 −ρ +
c+3

4
)2 +

4
n(n−1)

(ρ − c+3
4

)
c−1

4
+

(c−1)2

8n(n−1)
(2)



84 A. Šebeković

and equality hold if and only if with respect to suitable orthonormal frames {e1, . . . ,en} and

{en+1, . . . ,e2n,e2n+1 = ξ}, the shape operators of Mn in
∼
M

2m+1
(c) are given by:

Aen+1 =


λ1 µ 0 · · · 0
µ λ1 0 · · · 0
0 0 λ1 · · · 0
...

...
...

. . .
...

0 0 0 · · · λ1

 , Aen+2 =


λ2 +µ 0 0 · · · 0

0 λ2 −µ 0 · · · 0
0 0 λ2 · · · 0
...

...
...

. . .
...

0 0 0 · · · λ2

 ,

Aen+3 =


λ3 0 0 · · · 0
0 λ3 0 · · · 0
0 0 λ3 · · · 0
...

...
...

. . .
...

0 0 0 · · · λ3

 , Aen+4 = · · ·= Ae2n = Ae2n+1 = 0,

where by λ1, λ2, λ3 and µ are real functions on Mn.

Legendrian submanifolds Mn in Sasakian space forms
∼
M

2m+1
(c) satisfying equality

in generalised Wintgen inequality (2) are called generalised Wintgen ideal Legendrian
sumanifolds. A frame {e1,e2, . . . ,en,en+1, . . . ,e2n,e2n+1} with the correspoding shape op-

erators from Theorem 2.1 is called a Choi-Lu frame on such Mn in
∼
M

2m+1
(c) and its dis-

tinguished tangent plane e1 ∧ e2 is called the Choi-Lu plane of generalised Wintgen ideal
Legendrian submanifolds concerned.

3 The Casorati principal directions of submanifolds

For general submanifolds Mn in arbitrary Riemannian spaces
∼
M

n+m
, (1,1) tensor field

AC = ∑
α

A2
α , which is independent of the choice of local orthonormal normal frame fields

{ξ1, . . . ,ξm} is called Casorati operator of Mn in
∼
M

n+m
. The Casorati curvature C : Mn →

R of Mn in
∼
M

n+m
is defined by C =

1
n

trAC =
1
n ∑

α,i, j
(hα

i j)
2 whereby hα

i j denote the com-

ponents of the second fundamental form h with respect to any orthonormal frame field

{e1, . . . ,en,ξ1, . . . ,ξm} on Mn in
∼
M

n+m
. Since for each normal vector field ξ on Mn in

∼
M

n+m
the shape operator Aξ is a symmetric (1,1) tensor field on Mn at every point p ∈Mn

all eigenvalues of Aξ (p) are real. Because of that, there exists on Mn an orthonormal set of
eigenvector fields F1, . . . ,Fn. By this set of vector fields is determined the (extrinsic) Caso-

rati principal directions of Mn in
∼
M

n+m
. Corresponding eigenfunctions c1, . . . ,cn (all ≥ 0)
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are its extrinsic principal curvatures of Mn in
∼
M

n+m
, i.e. AC(Fi) = ciFi. The geometrical

meanings of these are given in [2, 11]

A hypersurface Mn in a Riemannian space
∼
M

n+1
is called umbilical when its shape

operator has eigenvalue of multiplicity n.

A hypersurfaces Mn in
∼
M

n+1
is called quasi-umbilical and 2− quasi-umbilical when

its shape operator has respectively eigen value of multiplicity ≥ n− 1 and ≥ n− 2. In the

same way, submanifold Mn in some ambient Riemannian manifold
∼
M

n+m
is called Casorati

quasi-umbilical and Casorati 2− quasi-umbilical submanifolds Mn in
∼
M

n+m
.

From Theorem 2.1 it follows that Casorati operator of generalised Wintgen ideal Leg-

endrian submanifolds Mn of Sasakian space form
∼
M

2n+1
(c) is given by

AC =


λ +2λ2µ +2µ2 2λ1µ 0 · · · 0

2λ1µ λ −2λ2µ +2µ2 0 · · · 0
0 0 λ · · · 0
...

...
...

. . .
...

0 0 0 · · · λ


whereby λ = λ 2

1 +λ 2
2 +λ 2

3 . Its eigenvalues are:

c1 = λ +2µ2 +2µ
√

λ 2
1 +λ 2

2 ,

c2 = λ +2µ2 −2µ
√

λ 2
1 +λ 2

2 ,

c3 = c4 = · · ·= cn = λ ,

and corresponding eigenvectors are

F1 =
λ1

√
2

√
λ 2

1 +λ 2
2 +λ2

√
λ 2

1 +λ 2
2

e1 −
λ2 +

√
λ 2

1 +λ 2
2

√
2

√
λ 2

1 +λ 2
2 +λ2

√
λ 2

1 +λ 2
2

e2,

F2 =
λ1

√
2

√
λ 2

1 +λ 2
2 −λ2

√
λ 2

1 +λ 2
2

e1 −
λ2 −

√
λ 2

1 +λ 2
2

√
2

√
λ 2

1 +λ 2
2 −λ2

√
λ 2

1 +λ 2
2

e2,

Fk = ek, (k = 3,4, . . . ,n).

The vector fields F1, F2 determine the 1-dimensional eigenspaces of AC corresponding to
c1 and c2 respectively, unless when λ1 = λ2 = 0 and µ ̸= 0, in which case the Choi-Lu
plane itself is 2-dimensional eigenspace of AC. When µ = 0 Casorati principal directions
are undetermined, and AC is proportional to the identity operator (Mn is totaly umbilical).
In any case, the tangent subspace e3∧ . . .∧en of Mn is an (n−2)-dimensional eigenspace of
AC corresponding to the Casorati curvature λ . Hence, in particular we have the following.
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Theorem 3.1 Every generalised Wintgen ideal Legendrian submanifold Mn in Sasakian

space form
∼
M

2n+1
(c) is Casorati 2-quasi-umbilical. When Mn is not totally umbilical,

then the orthogonal complement of its Choi-Lu plane is its (n− 2)-dimensional Casorati
eigenspace.

4 The Ricci principal directions of generalised Winthen ideal Legendrian
submanifolds

From the Theorem 2.1 and Gauss equation we obtain, up to the Algebric symmetries of the
(0,4) curvature tensor R of the generalised Wintgen ideal Legedrian submanifold Mn of

Sasakian space form
∼
M

2n+1
(c), all components of R are zero except these:

R1221 = 2µ2 − c1,

R1kk1 =−λ2µ − c1, (k ≥ 3)

R2kk2 = λ2µ − c1, (k ≥ 3)

R1kk2 =−λ1µ, (k ≥ 3)

Rkllk =−c1, (k ̸= l, k, l ≥ 3)

whereby c1 =
c+3

4 +λ 2
1 +λ 2

2 +λ 2
3 .

The nontrivial components of (0,2) Ricci tensor S of generalised Wintgen ideal Legen-

drian submanifold Mn in Sasakian space form
∼
M

2n+1
(c) are:

S11 = 2µ2 − (n−1)c1 − (n−2)λ2µ

S22 = 2µ2 − (n−1)c1 +(n−2)λ2µ

S12 =−(n−2)λ1µ

Skk =−(n−1)c1, (k ≥ 3).

It follows that Ricci operator of such submanifold is given by

S=


2µ2 − (n−1)c1 − (n−2)λ2µ −(n−2)λ1µ 0 · · · 0

−(n−2)λ1µ 2µ2 − (n−1)c1 +(n−2)λ2µ 0 · · · 0
0 0 −(n−1)c1 · · · 0
...

...
...

. . .
...

0 0 0 · · · −(n−1)c1


Its eigenvalues are
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Ric1 = 2µ2 − (n−1)c1 +(n−2)µ
√

λ 2
1 +λ 2

2 ,

Ric2 = 2µ2 − (n−1)c1 − (n−2)µ
√

λ 2
1 +λ 2

2 ,

Ric3 = Ric4 = · · ·= Ricn =−(n−1)c1

and corresponding eigenvector fields are:

R1 =
λ1

√
2

√
λ 2

1 +λ 2
2 +λ2

√
λ 2

1 +λ 2
2

e1 −
λ2 +

√
λ 2

1 +λ 2
2

√
2

√
λ 2

1 +λ 2
2 +λ2

√
λ 2

1 +λ 2
2

e2,

R2 =
λ1

√
2

√
λ 2

1 +λ 2
2 −λ2

√
λ 2

1 +λ 2
2

e1 −
λ2 −

√
λ 2

1 +λ 2
2

√
2

√
λ 2

1 +λ 2
2 −λ2

√
λ 2

1 +λ 2
2

e2,

Rk = ek, (k = 3,4, . . . ,n).

Hence, in partikular we have the following.

Theorem 4.1 Every generalised Wintgen ideal Legendrian submanifold Mn in Sasakian

space form
∼
M

2n+1
(c) is Ricci 2-quasi-umbilical. When Mn is not totally umbilical, then

orthogonal complement of its Choi-Lu plane is its (n−2)-dimensional Ricci eigenspace

The Casorati principal directions of a submanifold Mn in Riemannian space
∼
M

n+m
are,

from the extrinsic geometric point of view, the most important tangent directions. From the
intrinsic geometric point of view, the Ricci principal directions of such submanifolds are
the most important tangent directions.

The geometrical meaning of these notions could be seen in [6] where authors showed
that for Wintgen ideal submanifolds in real space forms the Ricci principal directions coin-
cide.

Here, from the corresponding fromulae given in sections 3 and 4, we establish the fol-
lowing.

Theorem 4.2 On every generalised Wintgen ideal Legendrian submanifold Mn in Sasakian

space form
∼
M

2n+1
(c) the Casorati and Ricci principal directions do coincide

Because of that, we may conclude that the particular shape any generalised Wintgen

ideal Legendrian submanifold Mn does relise in ambient Sasakian space form
∼
M

2n+1
(c) in

order to undergo the very least possible amount of extrinsic stress as allowed by its nor-
malise intrinsic Riemannian scalar curvature, manifests the geometrical property that the
principal tangent directions which are determined by this shape, naimely its Casorati prin-
cipal directions, are the same as the principal intrinsic tangent directions of its Riemannian
structure, namely its Ricci principal directions.
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