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On Generalized Solutions of Some Differential Equations with
Singular Coefficients

A. B. Antonevich, E. V. Kuzmina

Abstract: The article deals with the problem of existence of generalized solutions to simplest
linear differential equation with a singular coefficient q. The generalized solution was intro-
duced by choice one of the distribution Q corresponding q, and choice an approximation of Q
by a family of common functions. The generalized solution is defined as the limit of the solu-
tions of the approximating equations. It was demonstrated by model example that the existence
of such generalized solutions depends essentially on the method of approximation.
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1 Introduction

The problems considered in the paper appear at the analysis of the solutions of differential
equations with a singular coefficients. We will consider the equations of the form

u′(x)−q(x)u(x) = 0 , (1.1)

where function q has singularity at the point 0.
We remind that the distribution (generalized function) is a linear continuous functional

on the Schwartz space D(R) [1, 2]. Any locally integrable function u generates the distri-
bution

<U,φ >=
∫

u(x)φ(x)dx, φ ∈ D(R).

The classical solution u of (1.1) can be not integrable and a set of distribution U corresponds
to such function in the sense described in the section 2. But after the substitution of U in
the equation the product qU appears which is not determined in the distributions theory.

More general, the substitution of a distribution U in any equation of the form

u′−Qu = 0 , (1.2)
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where Q is a distribution, leads to the product QU , which is not determined in the distribu-
tions theory.

Therefore, the first problem is to give sense to notion of generalized solution of (1.1)
and (1.2), the second problem is to construct such solutions.

If q is a continuous or locally integrable function, (1.1) is the most simple differential
equation and its solutions can be constructed by separation of variables. After the division
on u and integration we have equality

ln |u(x)|=
∫ x

x0

q(t)dt +C

and the solution of the Cauchy problem u(x0) =C can be given by expression

u(x) =Cexp[
∫ x

x0

q(t)dt] =C exp[g(x)−g(x0)], (1.3)

where g(x) is a antiderivative of q.
But for equation (1.2) this approach can not be applied, because all used transformations

(multiplication, division, integration by segment, calculations of logarithm and exponent)
are not determined for distributions. In particular, for the distribution Q there exists an-
tiderivative G, but its exponent exp G is not determined and final expression (1.3) give not
a distribution.

Therefore, in order to construct generalized solutions of equations with generalized
coefficients we need use other approach.

Analysis of equations with generalized coefficients is connected with calculations of a
product of distribution by the following sense.

Let a family wε(x) converges to the distribution W as ε → 0 and a family vε(x) con-
verges to the distribution V. If there exists limit F of the products fε = wεvε , then F is
called the product of W and V under given methods of approximations. In general case the
question about the existence of the product is a hard problem and it is solved only for some
special W and V and special approximations.

As the main examples we consider equations

u′(x)+
s
x

u(x) = 0,s ∈ N. (1.4)

and
u′(x)+

1
x2 u(x) = 0. (1.5)

In contrast to case of continuous q, the set of classical solutions of such equations depends
on two arbitrary constant. For equation (1.4) these solutions are functions

u(x) =

{
C1
xs , x < 0;
C2
xs , x > 0,

(1.6)

where C1 and C2 are arbitrary constants.
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For equation (1.5) the classical solutions are

u(x) =

{
C1exp 1

x , x < 0;
C2exp 1

x , x > 0.
(1.7)

By the Cauchy condition u(−1) = B only the constant C1 is determined and the solution is
determined uniquely only for x < 0.

In order to give a definition of the generalized solutions we use the following way. We
will consider equation (1.1) under condition that there exist a set of distributions, which
coincides with q on the set R\0. This condition is fulfilled for (1.4) and (1.5).

The first step consists of a choice of distribution Q corresponding to the coefficient q
and passing to the equation with generalized coefficient (1.2).

The second step consists of a choice of some approximation for the distribution Q by
a family of locally integrable (may be smooth) functions qε . After this we have a family of
approximating equations

u′ε −qεuε = 0. (1.8)

Let uε are the solution of the Cauchy problem uε(x0) =C for (1.8).

Definition 1. If there exists a limit U of the family uε in the distributions space, then the
distribution U is called generalized solution of the Cauchy problem for (1.2) under the
given approximation of the coefficient Q.

One meets differential equations with generalized coefficients in many applications and
vast literature is devoted to their analysis (see, for example, [3, 4]), but the questions under
consideration not discussed in previous publications.

Since the distribution Q coincides with q on the set R \ 0, the antiderivative G of Q
coincides on R \ 0 with an antiderivative of q and is an ordinary function g(x). Therefore,
on set R\0 a classical solution of (1.2) singled out

u(x) =Cexp[g(x)−g(x0)], (1.9)

which is said to be the formal solution of the Cauchy problem.
Here we can see that the choice of a distribution Q corresponding to coefficient q get us

one classical solution determined on all line R.
It is natural presuppose that the generalized solution U coincides on R \ 0 with the

formal solution u. But it can be that such distributions not exist and we obtain necessary
condition: must be that the distributions, corresponding to the formal solution, exist.

For formal solutions of the form (1.7) such distributions not exist and for equation (1.5)
the generalized solutions not exist.

At the case of equation (1.4) to any formal solution u of the form (1.6) corresponds a set
of distributions U named regularizations of u (see Section 2) and the problem of generalized
solutions is rich in content.

The main problem is to clarify for which distributions Q and their approximations qε
the generalized solution of (1.2) exists.

The global answer it is not known even for the model equations (1.4) with q(x) = s
x .

.
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2 Regularization of the function with singularity

Let the function f be continuous at x ̸= 0, the estimation

| f (x)| ≤ const
1
|x|s

holds in a neighborhood of zero with some s ∈ N, and xs−1 f (x) is not integrable. Then
integral ∫

f (x)φ(x)dx, φ ∈ D(R), (2.1)

exists only if

φ ∈ Ls = {φ ∈ D(R) : φ(0) = φ ′(0) = ...= φ(s−1)(0) = 0} ,

and (2.1) defines a linear continuous functional Fs on subspace Ls. We call a distribution
F corresponding to f , if F is a continuation of Fs on all space D(R). Such continuation is
said to be regularization of divergent integral (2.1).

The following way of regularization can be used [1, 2]. Let η(x) be such bounded
function that η(x) = 1, if |x|< h, and η(x) = 0, if |x|> 2h. Then formula

< Fη ,φ >=
∫

f (x){φ(x)−
[ s−1

∑
k=0

1
k!

φ(k)(0)xk]η(x)}dx

give us some continuation of Fs. In particular, if

η(x) =

{
1, |x| ≤ 1
0, |x|> 1,

(2.2)

this continuation is

< F0,φ >=
∫
|x|<1

f (x)
[
φ(x)−

s−1

∑
k=0

1
k!

φ(k)(0)xk]dx+
∫
|x|>1

f (x){φ(x)dx. (2.3)

The set of all regularizations can be described by following proposition. Remind that
Dirac δ -function is functional ⟨δ , φ⟩= φ (0) and its derivatives determined as⟨

δ (k), φ
⟩
= (−1)kφ(k) (0) .

Proposition 1. Let η ∈ D(R). The distributions corresponding to given function f have
form

F = Fη +
s−1

∑
k=0

Mkδ (k) ,

where Mk are arbitrary constants.
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Proof. Let us consider s−dimentional subspace

Ds = {
[ s−1

∑
k=0

Ckxk]η(x)} ⊂ D(R)

The mapping

P : φ(x)→ [
s−1

∑
k=0

1
k!

φ(k)(0)xk]η(x)

is a projection of D(R) on Ds and gives the decomposition

D(R) = Ds ⊕Ls.

The functional Fs is determined on Ls and in order to construct its continuation F we need
define F on Ds. Since functions ek(x) = xkη(x),k = 0, . . . ,s− 1, form a basis in Ds, it is
sufficient assign the values < F,ek >, k = 0, . . . ,s−1. Therefore

< F,φ >=
s−1

∑
k=0

1
k!

< F,ek > φ(k)(0)+< Fη ,φ >=

=< Fη +
s−1

∑
0

Mkδ (k),φ >,

where Mk =
(−1)k

k! < F,ek > .

Example 1 Let f (x) = 1
x . Regularization (2.3) of 1

x , denoted by P(1
x ), is

< P(
1
x
),φ >=

∫
|x|<1

1
x
[φ(x)−φ(0)]dx+

∫
|x|>1

1
x

φ(x)dx . (2.4)

This distribution can be given by principal part of integral

< P(
1
x
),φ >= lim

h→0

∫
|x|>h

1
x

φ(x)dx .

The distributions corresponding to 1
x are

QM = P
(

1
x

)
+Mδ ,

where M are arbitrary constants.
Antiderivative for QM is locally integrable function GM(x) = ln |x|+ MΘ(x), where

Θ is Heaviside function. The formal solutions of equation u′+ sQMu = 0 with condition
u(−1) =C is

uM(x) =

{
C
|x|s , x < 0;
Ce−sM

|x|s , x > 0 .
(2.5)
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3 Convergence of approximations

Let function fε(x) be locally integrable and the family fε(x) tends uniformly to a function
f (x) on set {x : |x|> h} for all h > 0. Not arise from this that the family fε(x) converges to
any distribution.

Proposition 2. Let the estimation

| fε(x)| ≤
const
|x|ν

, where ν < s+1 ,

holds in the neighborhood of 0.
The family fε converges in distributions space if and only if there exist limits

lim
ε→0

∫ 1

−1

(−1) j

j!
fε(x)x jdx := K j, j = 0,1, . . . ,s−1 . (3.1)

Under these conditions the regularization F0 of f (x) given by (2.3) is determined and

lim
ε→0

fε := F = F0 +
s−1

∑
j=0

K jδ ( j) .

Proof. Use decomposition

φ(x) = [
s−1

∑
j=0

1
j!

φ( j)(0)x j]η(x)+ψ(x),

where η is given (2.2). Here ψ( j)(0) = 0 for j = 0,1, . . . ,s−1 and |ψ(x)| ≤ const|x|s, the
estimation

| fε(x)ψ(x)| ≤ const
|x|ν−s

holds, the Lebesque theorem can be applied and∫
fε(x)ψ(x)dx →

∫
f (x)ψ(x)dx =< F0,ψ > .

Therefore fε converges if and only if there exist limits of integrals∫
fε(x)xkη(x)dx.

It is equivalent to existence of limits in (3.1).
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4 Analytical representation

The existence and the form of generalized solution depend on the used approximation of
the generalized coefficient Q. One of the most natural approximation method is named
analytical representation [5].

Let Q+(z) be an analytical function on upper half-plane and Q−(z) be an analytical
function on lower half-plane. Is sed to be that these functions give analytical representation
of distribution Q, if

Q = lim
ε→0

[Q+(x+ iε)−Q−(x− iε)].

Here the family of smooth functions qε(x) = Q+(x+ iε)−Q−(x− iε) is an approximation
of Q.

It is well known that the analytical representation of P
(1

x

)
is

1
2
[

1
x+ iε

+
1

x− iε
] =

x
x2 + ε2

and the analytical representation of δ -function is the family

i
2π

[
1

x+ iε
− 1

x− iε

]
=

1
π

ε
x2 + ε2 . (4.1)

Therefore analytical representation of the distribution sQM = s
[
P
(1

x

)
+Mδ

]
can be written

in the form

qε(x) =
λ s

x+ iε
+

(1−λ )s
x− iε

, (4.2)

where λ = 1
2 +

Mi
2π .

Such analytical representation of s
[
P
(1

x

)
+Mδ

]
was used in [6, 7] for the construction

of generalized solutions of (1.4).
In particular, the family 1

x±iε converges to distribution

1
x± i0

:= P
(

1
x

)
± iπδ .

Since
1

(x± iε)s =
(−1)s−1

(s−1)!
[

1
x± iε

](s−1) ,

the family 1
(x±iε)s is the analytical representation of distribution

1
(x± i0)s :=

(−1)s−1

(s−1)!
[P
(

1
x

)
± iπδ ](s−1) .

Theorem 1. [7] Let uε be the solutions of the Cauchy problem uε (−1) = (−1)s for equa-
tions (1.8), where −qε is approximation of the distribution sQM = s

[
P
(1

x

)
+Mδ

]
given by

(4.2).
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The family uε converges in the distributions space only in two following cases:
I) if λ s ∈ Z and λ s ≤ 0, then

uε →
1

(x− i0)s ;

II) if λ s ∈ Z and λ s ≥ s, then

uε →
1

(x+ i0)s .

Let us note that the condition on λ in the Theorem 1 is equivalent to

M =
π
i
[
2m
s

−1] ,

where m ∈ Z and m ≤ 0 or m ≥ s.

5 Main Theorem

By the Theorem 1, under the analytical representations the generalized solutions of equation

u′+ sQMu = 0

exist only for special values of M. In particular, the distribution P(1
x ) is the most natural

among corresponding to 1
x , but the equation with such coefficient have not generalized

solutions under the analytical representations.
The question arises: Can it be a generalized solution of the equation

u′+P(
1
x
)u = 0 (5.1)

under some kind of approximation of P(1
x )?

The answer is the main result of this paper.
The formal solution of (5.1) with the condition u(−1) = 1 is function u(x) = 1

|x| . The
corresponding distributions are U =U0 +Kδ , where

<U0,φ >=
∫
|x|<1

1
|x|

[φ(x)−φ(0)]dx+
∫
|x|>1

1
|x|

φ(x)dx =

= lim
ε→0

[∫
|x|<ε

1
|x|

φ(x)dx−2ln
1
ε

φ(0)
]
. (5.2)

Remark that here the principal part of the integral in (5.2) not exists, the integrals∫
ε<|x|

1
|x|

φ(x)dx
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grow as 2ln 1
ε φ(0) and the regularization (5.2) is obtained by the subtract of these values.

We need to construct such approximation qε of P(1
x ) that the solutions of (1.8) make up

an approximation of a distribution of the form U0 +Kδ .
According (5.2) the family

vε(x) =

{
1
|x| , |x|> ε;

− 1
ε ln 1

ε , |x|< ε
(5.3)

is an approximation of the distribution (5.2).
But the functions vε(x) are discontinuous and can not be the solutions of a differential

equations.
An approximations of the distribution (5.2) by continuous functions fε(x) can be con-

structed. But, if the function fε(x) are real-valued, there exist points x0 such that fε(x0) = 0
and these functions can not be the solutions of a differential equations.

Therefore we must construct the required approximation of P(1
x ) by using complex-

valued functions.

Theorem 2. For any K ∈ R there exists approximation qε(x) of the distribution P(1
x ) such

that the corresponding solutions uε converge to the distribution U0 +Kδ .

Proof. The representation of P(1
x ) in the form (2.4) means that family

pε(x) =

{
1
x , |x|> ε;
0, |x|< ε

is an approximation of P(1
x ). Antiderivatives of pε(x) are continuous functions

gε(x) =

{
ln |x|, |x|> ε;
ln 1

ε , |x|< ε.

and the solutions of the Cauchy problem uε(−1) = 1 are

uε(x) =

{
1
|x| , |x|> ε;
1
ε , |x|< ε.

.

Here integrals ∫
uε(x)dx =

∫
|x|>ε

1
|x|

dx+
1
ε

∫
|x|<ε

φ(x)dx

grow as 2ln 1
ε φ(0) and the limit not exist.

Consider some other approximations of P(1
x ). Let

qε(x) =


ln |x|, |x|> ε;
1
ε
[C(ε)

ε + iπ
]
, −ε < x < 0;

− 1
ε
[C(ε)

ε + iπ
]
, 0 < x < ε.

(5.4)
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where C(ε) is an indetermined function. If C(ε)→ 0, expression (5.4) give some approxi-
mation of P(1

x ). The antiderivatives are functions

vε(x) = gε(x)+
[C(ε)

ε
+ iπ

]
ψ(

x
ε
) ,

where

ψ(x) =


x+1, −1 < x < 0,
1− x, 0 < x < 1,
0, |x|> 1,

.

The corresponding solutions are

wε(x) = evε (x) =

{
1
|x| , |x|> ε;
1
ε exp

[C(ε)
ε + iπ

]
ψ( x

ε ), |x|< ε.

and we must investigate convergence of wε(x) in dependence on C(ε).
By Proposition 2 it is necessary to proof that function

J(ε) =
∫ 1

−1
wε(x)dx

has limit as ε → 0.
This function can be calculated in explicit form:

J(ε) = 2ln
1
ε
+

2
ε

∫ 0

−ε
exp

[C(ε)
ε

+ iπ
]
[
x
ε
+1]dx =

= 2 ln
1
ε
+2

[C(ε)
ε

+ iπ
]−1{exp

[C(ε)
ε

+ iπ
]
−1

}
=

= 2 ln
1
ε
+2

[C(ε)
ε

+ iπ
]−1{− exp

[C(ε)
ε

]
−1

}
.

Real part is

Re(J(ε)) = 2 ln
1
ε
−2

[C(ε)
ε

][
(
C(ε)

ε
)2 +π2]−1{exp

[C(ε)
ε

]
+1

}
.

If C(ε) = ε , then

Re(J(ε)) = 2 ln
1
ε
−2

[
1+π2]−1{e+1

}
and

Re(J(ε))→+∞ as ε → 0 .

If C(ε) = aε ln 1
ε , where a > 0, then

Re(J(ε)) = 2 ln
1
ε
−2a ln

1
ε
{
[a ln

1
ε
]2 +π2}−1

(
1
εa +1

)
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and
Re(J(ε))→−∞ as ε → 0 .

Therefore, for a given K ∈ R and small ε exists C(ε) such that

ε <C(ε)< aε ln
1
ε

and Re(J(ε)) = K. Note that
ε

C(ε)
→ 0 (5.5)

for such C(ε) and from (5.5) follows that the imaginary part

J m(J(ε)) = 2π
[
(
C(ε)

ε
)2 +π2]−1{exp

[C(ε)
ε

]
+1

}
converges to 0. The Proposition 2 can be applied and wε(x)→U =U0 +Kδ , where U0 is
given by (5.2) and U are the required generalized solutions.

6 Conclusion

The results of the paper demonstrate that the properties of the equations with generalized
coefficients are very differ from the case of ordinary differential equations, even for the
most simple first order equations.
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